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Photodriven supramolecular systérase useful for informa-
tion gathering (sensing)storing? processing® and transmis-
sion? The important goal of molecular arithmetic can be
achieved in principle if “off-on” digital® AND and XOR logic
gate§&7 with independent inputs are available to operate on
binary numbers. Practical considerations would also require
strong signals when these gates are in their “on” states. We
now demonstrate the first molecular AND gafeshich satisfy
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1a; R=Et
1b; R,R=(CH,),0(CH,),

these criteria. These use two ionic inputs and a fluorescence
output, with a design basis of photoinduced electron transfer
(PET). Essentially complete digital action is achieved since
the “off” states are virtually nonfluorescent under the conditions
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of operation. The fluorescence efficiency in the “on” state, and
hence the signal strength, is high with an emission quantum
yield (¢r) of up to 0.24. As a bonus, systenisremain
functional even in mixed aqueous media. The few available
AND gates?® and systems which can be interpreted as $%cH,
(a) are poorly emissivé,(b) have “on-off” signal intensity
ratios that are smaft1®or (c) have truth tables that cannot be
properly testet1? even though the apparent outcome corre-
sponds to AND logic. The last point arises because most of
these require entry of the first ionic input to prepare the system
for the reception of the second ionic input. The second ion
cannot be entered into the system independent of the first ion.
The high performance df is at least partly due to the novel
arrangement of photo/ion-responsive modtiasfluorophore
flanked by two PET-active and ion-selective receptors with
interspersed spaceYs.This work complements parallel devel-
opments in other types of molecular logic gate®

System1 is designed to have no (or weak) PET to the
fluorophore from either receptor when they are bound to their
appropriate ion (aminefHand benzo-15-crown-5 ether/Na
This is the “on” state of fluorescence. When the amine group
is proton-free, it serves as an efficient PET don&Gher ~
—0.1 eV} to the fluorophore which is separated by only a
methylene group. When protons are present in sufficient con-
centration and NAis absent, the protonated aminomethyl moiety
behaves as an electron-withdrawing group on the anthracene
fluorophoré?” which permits rapid PET from the benzocrown
ether moiety AGper ~ —0.1 eV)® a short distance away.

Systemslaand1b were synthesized as follows. 4-(Anthra-
cen-9-ylmethyl)benzo-15-crown-5 etiémwas formylated at the
10 position under Vilsmeier conditions, reduced with NagH
treated with PEP/Br,, and aminated with ENH or O(CH,-
CH,)2NH, respectively. Systemsa and 1b were fully char-
acterized by elemental analysis and a range of spectroscopies.
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Figure 1. Raw fluorescence emission spectra of gatein MeOH
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la are given in Table 1. Detailed examination of maximum
intensities in the fluorescence specttg @s a function of ion
concentration ([M]) with the aid of eq 1 allows the extraction

109[(I¢ max = 1D/(1g = e min] = —log((M ) — log By (1)

of binding constantfy+) information. These define the ion

concentration thresholds for switching and form part of the
operating characteristics of the molecular logic gates. Since
fluorescence is only switched “on” in the presence of both ionic
inputs (H™ and alkali cation), binding constants are measured

excited at 377 nm under the four ionic conditions necessary to test its for one ion in the presence of the other in excess. feg is

digital AND logic gate function.
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Figure 2. Pictorial form of the truth table for digital AND logic gate

found to be 2.7 for botia and1b in the presence of (excess)
H*. log Bk+ is similarly found to be 2.7 fotaand 2.5 forlb.
These values are close to the corresponding data for the parent
benzo-15-crown-5 ether (Ig8nst = 3.1 and logBk+ = 2.9)2°
log fu* is 4.1 forlb in the presence of (excess) Nand 4.5 in
the presence of (excess)y K log S+ is immeasurably high for
lain MeOH, but can be measured to be 8.9 in Me€H}O
(1:1, viv) in the presence of Naand 8.4 in the presence of
K*. Under comparable conditiodd has log8y+ = 6.1 in the
presence of Na For comparison, 9-[(diethylamino)methyl]-
and 9-(morpholinomethyl)anthracenes havefiag = 9.2 and
6.3 in MeOH-H,0 (4:1, v/v), respectivelyt

It is particularly pleasing that these fluorescent gates can
potentially be operated at the single molecule |&¢eAnother
remarkable feature is that these photoionic gates currently
operate in wireless mode and self-select their two ionic inputs,
photonic power supply, and photonic output into the appropriate
molecular compartments with negligible cross-talk. Hard wiring
is possible, if necessary, since molecular conduits for photons
and ions have been demonstratedinmobilization of these

1b. The PET processes are also shown where they occur. The threed@tes on surfaces is feasible since simpler photoionic PET
low ¢ values are upper limits. The curly arrow symbolism should not Systems have already been anchored in orgéfiand inor-

be taken to imply a through space mechanism for PET.

Table 1. Truth Table and Operating Conditions for Digital AND
Gatela?

fluorescence

input, (H') input, (Na™ or K*) output @ 1a)°
noné none 0.0024
10°M none 0.0099
noné 102M Na* 0.005¢
10°M 1072M Na* 0.22
noné 6 x 10MK™ 0.0097¢
10°M 6 x 10°M K™ 0.10

2105 M laand1b in MeOH excited at the isosbestic point (377
nm). lem = 406, 428, and 449 (sh) nm when spectra are observable
under our instrumental conditions:*HNa", and K" inputs are provided
as methanesulfonatesgr values in this and all other cases are with
reference to the primary standard 9,10-diphenylanthracene in deaerate

ethanoP” ¢In contrast to gatelb, the more basic gatéa requires
1073 M morpholine as a proton scavenger when theikput is to be
absentd Upper limits.

gani@* macromolecular microenvironments.

In conclusion, small supermolecul&s6 e.g., 1, can be
persuaded to display digital AND gate action with a strong
fluorescence signal. The design basis consists of fluoreseence
PET competition and a careful arrangement of the photo/ion-
active components.
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